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Evidence for universality within the classes of deterministic and stochastic sandpile models
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Recent numerical studies have provided evidence that within the family of conservative, undirected sandpile
models with short range dynamic rules, deterministic models such as the Bak-Tang-WiesenfelfRmBd&|
C. Tang, and K. Wiesenfeld, Phys. Rev. L&9, 381(1987] and stochastic models such as the Manna model
[S. S. Manna, J. Phys. 24, L363 (1991 ] belong to different universality classes. In this paper we examine the
universality within each of the two classes in two dimensions by numerical simulations. To this end we
consider additional deterministic and stochastic models and use an extended set of critical exponents, scaling
functions, and geometrical features. Universal behavior is found within the class of deterministic Abelian
models, as well as within the class of stochastic modedsich includes both Abelian and non-Abelian
models. In addition, it is observed that deterministic but non-Abelian models exhibit critical exponents that
depend on a parameter, namely they are nonuniversal.
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[. INTRODUCTION models and examine their scaling properties using numerical
simulations and an extended set of critical exponents, scaling
Sandpile models were introduced over a decade ago asfanctions, and geometrical features. We obtain evidence for
paradigm of self-organized criticalitySOQ [1-3]. SOC  universal behavior within each of the two classes as well as
provides a useful framework for the Study of driven nonequi.further evidence that these classes are different from each
librium systems that dynamically evolve into a critical state.other.
At the critical state these systems exhibit avalanche dynam- The paper is organized as follows. The models are intro-
ics with |0ng_range Spatia| and tempora| Corre|ationS, Whicmuced in Sec. Il. The simulations and results are presented in
resemble the behavior at equilibrium critical points. In sand-Sec. lll, followed by a discussion in Sec. IV, and a summary
pile models, defined on a lattice, grains are deposited raril Sec. V.
domly until the height at some site exceeds some threshold,
thus becoming unstable. Grains from the unstable site are Il. MODELS
distributed between its nearest neighbors, which may be-
come unstable too, resulting in an avalanche. These models
were found to be self-driven into a critical state in which the  Sandpile models are defined om-@imensional lattice of
avalanche sizes follow a power-law distribution. The criticallinear sizel.. Each sitd is assigned a dynamic variald|i)
state, which can be characterized by various critical expothat represents some physical quantity such as energy, grain
nents and scaling functions, was studied extensively usingensity, stress, etc. A configurati¢g(i)} is calledstableif
both theoretical4—9] and numerical approachgs0-1§. for all sitesE(i)<E;, whereE; is a threshold value. The
To examine the dependence of the critical state on variougvolution between stable configurations is by the following
properties of the models, different sandpile models haveules.(i) Adding energy: Given a stable configuratiff(j)}
been introduced such as the Marjdd] and the Zhan§18] we select a sitd at random and increasg(i) by some
models. The issue of universality has been debated. AnalyteamountdE. When an unstable configuration is reached, rule
cal studied19-23 and numerical simulationfsl6,24] indi- (i) is applied. (i) Relaxation(or toppling rule: If E(i)
cated that the Manna model, which is stochastic, as well asE., relaxation takes place and energy is distributed in the
the Zhang model, which is deterministic and non-Abelian,following way:
belong to the universality class of the original model intro-
duced by Bak, Tang, and Wiesenfdl@8TW), which is de-
terministic and Abeliari6]. Numerical simulations using an
extended set of critical exponents provided evidence that de-
terministic Abelian and stochastic models exhibit different E(i+e)—E(i+e+AE(e), (@]
scaling properties and thus belong to different universality
classeq 25,26]. Further support for this hypothesis was re- wheree are a set of vectors from the sitéo some neighbors.
cently obtained using multifractal analysj27], moment As a result of the relaxatiork (i+€) for one or more of the
analysig 28], as well as studies of sandpile models as closedheighbors may exceed the thresh&d. The relaxation rule
systemq29-31]. is then applied until a stable configuration is reached. The
In this paper we examine the universality within the classsequence of relaxations is an avalanche that propagates
of deterministic Abelian models and within the class of sto-through the lattice. Avalanches can be characterized by prop-
chastic models in the two-dimensional case. To this end werties such as their size, area, and lifetime. The siakan
consider additional deterministic Abelian and stochasticavalanche is the total number of relaxation events that oc-

A. General definitions and properties

E(i)—E(i)— X AE(e),
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curred during the course of the avalanche. The arsathe The Zhang model is a deterministic model for whigp
number of lattice sites that experienced at least one relax=1 and §E is chosen as a constant value in range &
ation event during the avalanche. In order to obtain a sen<1 [18]. The relaxation vector is given byp(b,b,b), where
sible definition of the avalanche lifetinte we first need to b= E(|)/4 andE(|) is the amount of energy in the active site
define the time step. A singténe-stepiteration is defined as  pefore the toppling had occurred. Clearly, the sitemains

the relaxation of all the sites that satisfiedi)=E., after  empty after toppling. It is easy to see that the Zhang model is
the previous iteration was completed. Then, the lifetime of

: s 4 non-Abelian. Consider two nearest neighbor sites 1 and 2
the avalanche is defined as the number of time steps that toqhat are active simultaneously, namef(1)=E, andE(2)
place during the avalanche. ' ! ¢

- =E,. If we first topple site 1 and then topple sitg@sum-
The cr|t|cal. exponents depend on th_e vedkf&l , 10 b(_a ing no further sites becomes unstabli@ the resulting con-
termedrelaxation vector For a square lattice with relaxation _. . . .
. S figurationE(1)>0 andE(2)=0. If the order of topplings is
to nearest neighbors it is of the formAE reversed one obtairs(1)=0 andE(2)>0, namely, the re-
—(En,Ee ,Es,Ey), where Ey,Eg,Es, and Ey, are the =~ ! Y

amounts transferred to the northern, eastern, southern, a Hltmg configuration depends on the order of topplings and

. . . - thus the model is non-Abelian. The critical exponents of the
western nearest ne|ghbo_rs, respectlve_ly. Using the relaxat|02hang model were found to be independent gf the value of
vector we can characterize the sandpile models as aidter the added energyE as long asSE<E, [16]
terministicor stochasticIf the toppling rule, given bAE is 9 9 ¢ :

a constant or is given by a deterministic functiong) for In a class of stochgstlc san_dplle models, first introduced
. o : L by Manna, a set of neighbors is randomly chosen for relax-
the toppling site then the model is deterministic. Any sto-

chastic component idE makes the model stochastic. An- ation[17]. Such models can be specified by a set of relax-
other distinction is betweeAbelianandnon-Abelianmodels ation vectors, each vector being assigned a probability for it

[6,32]. Consider a stable initial configuration and a series Ofa\pphcatmn. For example, a possible realization of a Manna

two avalanches initiated by adding eneréfy to sites 1 and tW.O state model, wittE.=2 andSE=1, includes six relax
. o . ; . __ation vectors (1,1,0,0), (1,0,1,0), (1,0,0,1), (0,1,1,0),
2. The model is Abelian if the resulting stable configuration : . o
o . . (0,1,0,1), and (0,0,1,1), each one applied with a probability
after the two avalanches is independent of the order in wh|cOf 1/6. In the original model introduced by Manfi&7] an
the energy was added to 1 and 2 as well as of the order i : 9 y

: : unstable site distributes all its energy to its neighbors and
which unstable sites are toppled. Any dependence on th . .
. ecomes empty. It can be shown that this model is non-
order makes the model non-Abelian.

. . L Abelian using the argument presented above for the Zhang
The sandpile models considered in this paper are CONSEILqdel. Later, various Abelian versions of the Manna model

vative in the sense that the dynamics conserves energy, ; ’ : . L

These models can be studied either with clogadberiodio Were introduced, in which the number of energy units dis

o o .. tributed from an unstable site is a constésee, e.g., Refs.
boundary conditions, where the total energy is fixed, or wit .
. : 25,33,31). To see whether these models are Abelian, con-
open boundary conditions. For open boundaries, when a

. ; siger two simultaneously unstable nearest neighbor sites 1
avalanche reaches a boundary site some energy is transferrgnd 2. Assume that the relaxation vectors of these sites are
out of the systemnamely, dissipation takes place at the :

boundariel In the case of open boundary conditions thepredeterminec{randoml;) and are independent of the order

critical state is reached spontaneously in the limit in which?gethreé;l}ﬁﬁ] pl”l%nlf? H;;igﬁsies’ Jigztem;ic;re]r:’[heoth-lr—]\év g:ggflsf
the random addition of energipr drive) is infinitely slow opolings I\?ote hogwever that unl?ke the BTW model in
(practically it means that the next energy unit is added onl PPINgs. !

after the previous avalanche is complgteithis state is char- tiar:lIE?]stthaeblféngl)r?f?nljlgii?r?oi?] ;zéu&;gﬁs;e&rgg;o{hgyf;ﬁ:ael ::r:)In
acterized by a power-law distribution of avalanche sizes. Ir}. . 9 ’ .

" . iguration depends also on the random choice of the relax-
the critical state the added energf per avalanche is bal-

anced on average by the energy that flows out through thatlon vectors. Another property of the Manna model is that

: . the relaxation vector is isotropic only on average, while the
boundaries. Therefore, the average amount of energy leavin ; . :
ngle topplings are anisotropic.
the system per avalanche é&.

C. Additional models

B. Previously introduced models We will now present additional models to be used for the

In the BTW model,E.=4, SE=1, andAE=(1,1,1,1). study of universality within the classes of deterministic and
Since AE is a constant this model is clearly deterministic. stochastic models. These models are variants of the Zhang
Note that sinceAE is independent oE(i), if an active site  model. In theGeneralized Zhangiodel the Zhang relaxation
with E(i)>E, is toppled, it remains nonempty after the top- vector is modified intoAE=(b,b,b,b) where b=pE(i)/4
pling event had occurred. The BTW model was shown toand 0<p=<1 is a predefined constaf@4,35. In this model
belong to a class of Abelian mod€l8]. This can be easily only a fractionp of the energy in the unstable sités dis-
demonstrated by considering two nearest neighbor sites fributed to its neighbors, and the rest remains. ihike the
and 2 that are active simultaneously. Although the site thaZhang model, this model is deterministic and non-Abelian.
topples first adds a unit of energy to the other site, that sit€onsider a pair of nearest neighbor sites 1 and 2 for which
still distributes only four units, independently of how super-E(1)=E. and E(2)=E_ simultaneously. If we first topple
critical it became. site 1 and later topple site 2 we obtain
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p p ' ' ' '
E(l)—>(l—p)E(1)+ZE(2)+1—6E(1), 71 (a) o« |

2

E(2)~(1-p)E(2)+ SE(1) - TE(), sl |
=
p 5
E(1+e)—E(1+e)+ ;E(1), LI |
p p?
E(2+€)—E(2+8)+ 7E(2)+ 1cE(1). 2) .1 |

Reversing the order of topplings of these two sites we obtain

P p? o5 05 15 25 85 45 55 65
E(l)—>(1—p)E(1)+ZE(Z)—ZE(Z),
logga
E(2)—(1- )E(2)+EE(1)+p—2E(2) | | | |
P 4 16 <) 70 1
E(l+e)-E(1+e)+ DE(1)+ p—ZE(z)
4 16 77 = °7 I
=,
p m
E(2+e) —E(2+e)+ ZE(Z). ®) %% al ]

The difference between the two resulting configurations is
found to be of ordem?. Therefore, in the limitp—0 this 10
difference vanishes and the order of relaxations becomes ir
relevant. The model becomes Abelian in this limit and is
termed theAbelian Zhangmodel. This limit resembles the - . . ‘ ‘ . .
situation in rotations of a rigid body in three-dimensional 05 05 15 25 35 45 85 65
space, where infinitesimal rotations are Abelian while finite
rotations are non-Abeliaf36]. Moreover, within this anal-
ogy, the BTW model may correspond to the group of rota- FIG. 1. The conditional expectation valuggs|a] vs a for the
tions by 180° around the, y, and z axes, which is also BTW model (a) and for the Manna two-state modgd) for three
Abelian. different system sizes: 128(), 512(1), and 1024@). The expo-
We also consider another modification of the Zhangnentys,, given by the slope in the straight segmentyig=1.06
model, in whichAE=(b,b,b,b), whereb=pE(i)/4 and for =~ +0.01 for the BTW model andys,=1.23+0.01 for the Manna
each toppling evenp is chosen randomly in the range 0 model.
<p=1. This model, which is non-Abelian and stochastic is

logyga

termedstochastic Zhangnodel. Yyx= 7;y1 (4)
1. SIMULATIONS AND RESULTS and
To characterize the models described above we have per- Yax= YzyYyx- (5)

formed extensive computer simulations and calculated an ex-

tended set of characterization measures for two-dimensiondlhe geometric exponent,, is studied by drawing on a log-
sandpile models. These measures include the distribution e¥eg scaleE[s|a] vs a, whereE[s|a] is the conditional ex-
ponents, the geometric exponents, as well as scaling fungectation value of the avalanche size for avalanches of a
tions and geometric features of the avalandl2€§. Thedis-  given areaa. It is shown for system sizes &f=128, 512,
tribution exponentr, characterizes the distribution of the and 1024 for the BTW modéFig. 1(a)] and for the Manna
avalanche parametgr It is found thatP(x) ~x1~™x, wherex ~ model[Fig. 1(b)]. For both models the lines coincide in the
may represent the avalanche siareaa, or lifetimet. The  common range of scales due to the fact that the geometric
geometric exponeny,, relates the distributions of andy  exponents are weakly dependent on the system[2&26.

and is defined in terms of the conditional expectation valuéThe slope of the straight segments gives risey{g=1.06
E[x|y]~y” wherex,y e {s,a,t} [13,14]. The geometric ex- *0.01 for the BTW model andys,=1.23+0.01 for the
ponents satisfy the relations Manna model.
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10 i . : . i range G<t<t,,, (note that for an avalanche of lifetime
* tmax: a(t)=s(t)=0 for t=t,,,,+1). However, averaging
10° | A - these functions for each value bver a large number of
—_— BTW avalanches, a typical shape emerges. These averages give
10° | * AZ . rise to the functioné\(t) describing the area growth rate and
) : v S(t), which is the size growth rate of the avalanche. Accord-
=100 - Manna | focpstic . ing to the dynamic scaling assumption, each one of these
% R . functions can be written in the general scaling form,
107 + 1
10 X(1) = Kx(t)y “x(n), (6)
o L ] whereu=t/(t)yx, Xe{S,A}, and
100 ) 1 1 1 1 L tx t
10' 10" 10° 10° 10* 10° 10° Z ®
a (Ox=—". )

> X(1)

FIG. 2. The conditional expectation valuEgs|a] vs a for the t
deterministic Abelian model$BTW and Abelian Zhangand for
the stochastic model@anna and stochastic ZhandClearly, the  The scaling functiorfy(u«) satisfies the sum rules
E[s|a] values for the Abelian Zhang model coincide with those
obtained for the BTW model, while the stochastic Zhang results o ke
coincide with those obtained for the Manna model. This indicates f fx(p)du= f
that while there is a clear distinction between the deterministic Abe-
lian and stochastic models, within each of the two clasggsis
universal. The system size used herke #8512 and the parameter
used in the simulation of the Abelian Zhang modepis 0.005.

. mix(p)dp=1. (8)

The scaling function$g(x) andf(u) for the BTW and the
Manna models were introduced in RE26], based on simu-
lation results folL =128, 256, and 512. It was shown that the
scaling functions for these two models are different from
each other, supporting the existence of two universality
glasses. Here we examine the universality of these functions

The conditional expectation valug§s|a] vs a are shown
in Fig. 2 for the BTW and Abelian Zhang models that are
deterministic as well as for the Manna and stochastic Zhan
models that are stochastic. For the deterministic models w
find that the exponeny,, for the Abelian Zhang model co-
incides with its value for the BTW model. For the stochastic
models we find that the exponent, for the stochastic
Zhang model coincides with its value for the Manna model.
These results indicate that there is a considerable degree

ithin the classes of deterministic Abelian and stochastic
models. The scaling functions obtained for models in these
two classes are shown in Fig. 3. In the deterministic Abelian
class we observe a good coincidence between the BTW and
the Abelian Zhang models for bofiy(w) andfa(w). Simi-
Ialrly, in the stochastic class we observe a good coincidence
Between the Manna and stochastic Zhang models. These re-

universality within each of the two classes. . . ; . o
. . sults provide further evidence for universality within each of
The avalanche properties studied above, such as thaarea[lhe WO classes

and sizes, characterize an avalanche as a whole. These prop- ; .

. ; To characterize the avalanche structures we examine the
erties are measured only after the avalanche is completed. Fonction £(i), that provides the number of toppling events at
examine the evolution during the avalanche one can stud ' P ppiing

! ite i during the avalanche. The functidifi) is shown for
the rate of change o& and s during the avalanche. The : . . .
avalanche area.(t) is defined as the number of sites Wheregzg)]B-trrYZ I\T:r?r?;[ill% didlj(li)i]’ tg(i)?t;erl??hgZ?Qghgs?i%élzzhgén
at least one relaxation occurred during the fittéine steps of ’ 9. ’ g

the avalanche. As the avalanche is completgd) coincides model[Fig. 4(d)]. For the deterministic models, we observe

. ) ; a shell structure in which all sites that relaxed at laastl
\évgnvziev:re? OLtPS aVﬁf;l]g?ye. \;\éf)oleganig /3? thvir:g?; times form a connected cluster with no holes, which is con-
C 1 I -

_ o . . tained in the cluster of sites that relaxed at leaines[11].
gjcnggé?;;ét;;;t a?ct(i;[r)téblzzmvsgig\l/zafgr) tk?évﬁrsstttri]rie The Stochastic models exhibit a random avalanche structure
(and are to be toppled in the next time Stefs the ava- with many peaks and hold®5,26. A related and useful

PP , concept in the analysis of the avalanche structure in deter-
lanche evolves to an end we find that the avalanche area

. otma _ . fRinistic Abelian models is the decomposition of an ava-
given bya=2,7¢a(t), wherety., is the avalanche lifetime, |3nche intowavesof topplings[37—40. The waves are ob-

and thet=0 step consists of the deposition event that initi-tained by a specific ordering of the toppling everagter
ated the avalanche. Similariyt) is defined as the number of energysE was added at sit§. The first wave consists of the
active sites at time (namely, sites that are to topple in the toppling of all the sites that became unstable due to the first
next time step Then, the avalanche size is given BY toppling of i, beforei is toppled for the second time. Simi-
=E:$%Xs(t). When a(t) and s(t) are plotted for a single larly, the nth wave is generated after tmgh toppling ofi,
avalanche, highly irregular functions are obtained in theuntil at the end of the last wavieremains stable. The wave
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exhibits a bend typical of a crossover behavi@6]. The
average size and area growth functions during the avalanche
0.8 in the Zhang model do not collapse into scaling functions
06 [26]. For the generalized Zhang model the avalanche struc-
) ture is intermediate between those of the deterministic Abe-
§ 0.4 lian and stochastic models and depends on the parameter
= As p—0 the avalanche structure converges to the ordered
:f 0.2 shell structure of the BTW modéFig. 4(b)].
We conclude that the universality class of deterministic
0.0 sandpile models includes only the ones that are Abelian,
such as the BTW and the Abelian Zhang models. The uni-
versality class of stochastic sandpiles includes both Abelian
models(such as the Manna modeind non-Abelian models
1.0 (such as the stochastic Zhang model
= 05 IV. DISCUSSION
S In recent years the universality in sandpile models was
studied theoretically using the fixed scale transformation ap-
0.0

' ! ' ' ! ' proach[19,20,41,42as well as the dynamic renormalization
0.0 1.0 20 00 1.0 20 30 group (RG) approach21-23. The approach introduced in
t/(t) t/(t) Refs.[19,20 is a real space renormalization group scheme. It
provides recursion equations for the dynamical variables as
the system is coarse grained from smaller to larger cells,
models. (a) fg(t/(t)) for the stochastic models, Manria-) and Co_qpled to a statlonary condltlpn_ n (_)rder to mal_ntaln th_e
stochastic Zhang -); (b) fA(t/(t)) for the same stochastic models: crmgal state. The equa’qons exhibit a single stable fixed point
(c) f&(t/(t)) for the Abelian models, BTW—) and Abelian Zhang that is reached from either the BTW or the Manna param-
(- -); (d) fA(t/(t)) for the same Abelian models. fia) and (b) we ~ €ters at the microscopic scale. The approach introduced in
observe a good coincidence between the scaling function for thRefs.[23] is a dynamical RG scheme based on a nonlinear
Manna and the stochastic Zhang models, whilédnand (d) we partial differential equation that is designed to describe the
observe a good coincidence between the BTW and the Abeliatong wavelength behavior of the sandpile dynamics. This
Zhang models. approach was applied to the BTW and the Zhang models

concluding that they belong to the same universality class.
structure is simpler than the entire avalanche since, for de- Numerical studies of sandpile models, based on an ex-
terministic Abelian models, each site can topple at most onctended set of critical exponents, scaling functions, and other
during a wave, which enables complete analysis of their scalgeometric features of the avalanches provided evidence that
ing propertied40]. The concept of waves does not seem tothe BTW and Manna models belong to different universality
apply in the case of stochastic models, in which sites cawlassed25,26. Furthermore, it was recently found that the
topple multiple times between topplings iof difference in scaling behavior of deterministic and stochastic
As an additional test of universality we compare the dis-models appears also in directed mode3].
tribution exponentr, between the two models in each class.  To further examine the results of Ref&5,26], the expec-
In Fig. 5 we present on a log-log scale the distributipfs)  tation valuesE[s|a] for the BTW and Manna models were
vs s for the BTW (@) and the Abelian Zhang{) models studied in Ref[24] taking into account corrections to scal-
[Fig. 5@)], and for the Manna®) and the stochastic Zhang ing. It was argued that since all the avalanches sasisfg,
(O) models[Fig. 5b)]. Good agreement is found in both and the distributioP(s|a) of sizes for avalanches of a given
cases. For the two deterministic models the slope of th@rea is a broad asymmetric distribution, the scaling should be
straight line segment gives rise t@=2.10+0.02. For the described according to
two stochastic models;;=2.25+0.02 for the Manna model
andr=2.23+ 0.02 for the stochastic Zhang model. As noted
in Ref.[25] the exponent is not the most reliable measure E[sla]=a+Ca’s, 9
of universality due to its relatively strong size dependence.
Consider the class of deterministic models that are non-

Abelian. It turns out that such models exhibit crossover bewhereC is a honuniversal constant. Using this relation to fit
havior. For example, the exponent of the generalized the simulation results they obtain a linear fit with,
Zhang model varies continuously as the paramptarlow- =1.35*+0.05 for both models, suggesting that the two mod-
ered from the Zhang value,=2.26-0.02 atp=1 to the els belong to the same universality class. Note that in general
BTW values7s=2.10+0.02 asp—0 (Fig. 6). Also, for the the correction term could take the fo wherey<yg,, SO
Zhang model the conditional expectation vakis|a] vsa  the choice ofal is somewhat arbitrary. The values of the

FIG. 3. The scaling functions for the Abelian and stochastic
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(a) ©

(®) (d)

FIG. 4. Typical large avalanche structures for the BTW mdéglthe Abelian Zhang modéb), the Manna two-state modéd), and the
stochastic Zhang modétl). The gray scales indicate the number of toppling events that occurred at each site during the avalanche. White
represents zero relaxations and black represents the most active domains with the maximal number of relaxations. The system size is
=128. It is observed that both deterministic Abelian models exhibit a regular structure of domains of high activity inside domains of lower
activity, while the stochastic models exhibit an irregular structure.

geometric exponents calculated previously, without the corsults of this more complete analysis confirm the conclusion
rection term, areyg,=1.06-0.01, y,,=1.53+0.01, and of Refs.[25,2€ that the BTW and Manna models belong to
vst=1.62+0.01 for the BTW model and/s,=1.23+0.01, different universality classes.

var=1.3550.01, andy;=1.70+0.01 for the Manna model Further evidence for the distinction between the BTW and
[25]. For both models, these values approximately satisfy théhe Manna models was obtained from the analysis of these
relation ys,yat= vst, While the value ofys, obtained in Ref.  models under closer periodig boundary condition§29—

[24] does not satisfy this relation. This is due to the fact that31]. In this case both the drive and the dissipation are re-
for y,: and ys; one does not expect a correction term of thismoved and the total energy of the system is conserved. Un-
type. More recently, the conditional probability distribution der these conditions the models exhibit a second order
P(s|a) of the avalanche sizes for a given area was examinedynamical phase transition between a static phase and a dy-
using moment analysi®7,28. It was found to exhibit mul- namical phase in which the avalanche is persistent. The criti-
tifractal scaling indicating that the scaling behavior of thiscal exponents that characterize the phase transition were
distribution cannot be fully characterized by a single expo-<found to be different in the BTW and the Manna models,
nent but requires a spectrum of critical exponents. The reproviding further evidence that they belong to different uni-
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p
5| | FIG. 6. The exponent, of the avalanche size distribution for
the generalized Zhang model as a function of the parametgy 0
<1. It is found thatrg varies smoothly as a function @ The
model coincides with the Zhang model fpe=1, wherer,=2.26
3t 1 +0.02. Asp is lowered, s decreases towards the value for the
= deterministic Abelian models, namely,=2.10+0.02 in the limit
Q, p—0. The system size is=128.
g 1
share the same operator algebra as the Abelian sandpile mod-
L - els, however the relaxation mechanism in these models is
different. Their critical properties are found to be different
than those of sandpile models.
_3 L L 1 | 1o
0 1 2 3 4 5 6

logyg 8
V. SUMMARY AND CONCLUSIONS
FIG. 5. The distribution of avalanche size¢s) vss: (a) for the ; ; ; ;
BTW (®) and the Abelian Zhangwith p—0.05) models 0): (b) Reqent numencal studies of conservgtwe, undlrepted
for the Manna @) and the stochastic Zhang modelsl) for L Sa.ndp”e models Wlth .shlort rar?ge dynamic rules provided
—128. Good agreement is found between the results for the wévidence that determlmstlc Abelian models such as the BTW
models in each class. model and stochastic models such as the Manna model ex-
hibit different scaling behavior and thus do not belong to the
same universality class. In this paper we examined the uni-
versality classes. Crossover phenomena between the my@rsallty Wr_[h_m _each OT these two classes of mode_ls, namely,
classes have also been studjéd]. thg determ|n|st|c_AbeI|an ch_ss and the st_ochast|c class. To
In this paper we focused on conservative, undirectedhis end we considered additional mo@els in the two classgs.
sandpile models with short range dynamic rules. There i§V€ then used an extended set of critical exponents, scaling
evidence that all three properties are relevant and therefofgnctions, and geometric features to characterize the ava-
our results app|y 0n|y within this type of models. For non- lanche dynamiCS of the different models in two dimensions.
conservative models it was found that the critical exponent&omparisons of the results show nearly identical scaling
are nonuniversal. They depend on a parameter that deteproperties for the models within the deterministic Abelian
mines the rate at which energy is dissipdié8,46. Directed class as well as within the stochastic class, providing evi-
sandpile models were found to exhibit a universality class oflence for universality within each of these two classes. Sig-
deterministic model§4] as well as a universality class of nificant differences are observed between the two classes, in
stochastic model§47,43,48, both exhibit different critical agreement with previous studig®5,26, indicating that
behavior than the corresponding classes of undirected modhese are two distinct universality classes. It was also ob-
els. served that deterministic models that are non-Abelian exhibit
It was recently shown that models of Eulerian walkerscritical exponents that depend on a parameter, namely, they
exhibit SOC[49,50. These are deterministic models that are nonuniversal.
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