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Evidence for universality within the classes of deterministic and stochastic sandpile models
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Recent numerical studies have provided evidence that within the family of conservative, undirected sandpile
models with short range dynamic rules, deterministic models such as the Bak-Tang-Wiesenfeld model@P. Bak,
C. Tang, and K. Wiesenfeld, Phys. Rev. Lett.59, 381~1987!# and stochastic models such as the Manna model
@S. S. Manna, J. Phys. A24, L363 ~1991!# belong to different universality classes. In this paper we examine the
universality within each of the two classes in two dimensions by numerical simulations. To this end we
consider additional deterministic and stochastic models and use an extended set of critical exponents, scaling
functions, and geometrical features. Universal behavior is found within the class of deterministic Abelian
models, as well as within the class of stochastic models~which includes both Abelian and non-Abelian
models!. In addition, it is observed that deterministic but non-Abelian models exhibit critical exponents that
depend on a parameter, namely they are nonuniversal.

DOI: 10.1103/PhysRevE.63.061309 PACS number~s!: 05.70.Jk, 05.40.2a, 05.70.Ln
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I. INTRODUCTION

Sandpile models were introduced over a decade ago
paradigm of self-organized criticality~SOC! @1–3#. SOC
provides a useful framework for the study of driven noneq
librium systems that dynamically evolve into a critical sta
At the critical state these systems exhibit avalanche dyn
ics with long-range spatial and temporal correlations, wh
resemble the behavior at equilibrium critical points. In san
pile models, defined on a lattice, grains are deposited
domly until the height at some site exceeds some thresh
thus becoming unstable. Grains from the unstable site
distributed between its nearest neighbors, which may
come unstable too, resulting in an avalanche. These mo
were found to be self-driven into a critical state in which t
avalanche sizes follow a power-law distribution. The critic
state, which can be characterized by various critical ex
nents and scaling functions, was studied extensively us
both theoretical@4–9# and numerical approaches@10–16#.

To examine the dependence of the critical state on var
properties of the models, different sandpile models h
been introduced such as the Manna@17# and the Zhang@18#
models. The issue of universality has been debated. Ana
cal studies@19–23# and numerical simulations@16,24# indi-
cated that the Manna model, which is stochastic, as wel
the Zhang model, which is deterministic and non-Abelia
belong to the universality class of the original model intr
duced by Bak, Tang, and Wiesenfeld~BTW!, which is de-
terministic and Abelian@6#. Numerical simulations using a
extended set of critical exponents provided evidence that
terministic Abelian and stochastic models exhibit differe
scaling properties and thus belong to different universa
classes@25,26#. Further support for this hypothesis was r
cently obtained using multifractal analysis@27#, moment
analysis@28#, as well as studies of sandpile models as clo
systems@29–31#.

In this paper we examine the universality within the cla
of deterministic Abelian models and within the class of s
chastic models in the two-dimensional case. To this end
consider additional deterministic Abelian and stochas
1063-651X/2001/63~6!/061309~8!/$20.00 63 0613
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models and examine their scaling properties using numer
simulations and an extended set of critical exponents, sca
functions, and geometrical features. We obtain evidence
universal behavior within each of the two classes as wel
further evidence that these classes are different from e
other.

The paper is organized as follows. The models are in
duced in Sec. II. The simulations and results are presente
Sec. III, followed by a discussion in Sec. IV, and a summa
in Sec. V.

II. MODELS

A. General definitions and properties

Sandpile models are defined on ad-dimensional lattice of
linear sizeL. Each sitei is assigned a dynamic variableE( i)
that represents some physical quantity such as energy, g
density, stress, etc. A configuration$E( i)% is calledstableif
for all sitesE( i),Ec , whereEc is a threshold value. The
evolution between stable configurations is by the followi
rules.~i! Adding energy: Given a stable configuration$E( j )%
we select a sitei at random and increaseE( i) by some
amountdE. When an unstable configuration is reached, r
~ii ! is applied. ~ii ! Relaxation ~or toppling! rule: If E( i)
>Ec , relaxation takes place and energy is distributed in
following way:

E~ i!→E~ i!2(
e

DE~e!,

E~ i1e!→E~ i1e!1DE~e!, ~1!

wheree are a set of vectors from the sitei to some neighbors
As a result of the relaxation,E( i1e) for one or more of the
neighbors may exceed the thresholdEc . The relaxation rule
is then applied until a stable configuration is reached. T
sequence of relaxations is an avalanche that propag
through the lattice. Avalanches can be characterized by p
erties such as their size, area, and lifetime. The sizes of an
avalanche is the total number of relaxation events that
©2001 The American Physical Society09-1
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curred during the course of the avalanche. The areaa is the
number of lattice sites that experienced at least one re
ation event during the avalanche. In order to obtain a s
sible definition of the avalanche lifetimet, we first need to
define the time step. A singletime-stepiteration is defined as
the relaxation of all the sites that satisfiedE( i)>Ec , after
the previous iteration was completed. Then, the lifetime
the avalanche is defined as the number of time steps that
place during the avalanche.

The critical exponents depend on the vectorDE, to be
termedrelaxation vector. For a square lattice with relaxatio
to nearest neighbors it is of the formDE
5(EN ,EE ,ES ,EW), where EN ,EE ,ES , and EW are the
amounts transferred to the northern, eastern, southern,
western nearest neighbors, respectively. Using the relaxa
vector we can characterize the sandpile models as eithede-
terministicor stochastic. If the toppling rule, given byDE is
a constant or is given by a deterministic function ofE( i) for
the toppling sitei then the model is deterministic. Any sto
chastic component inDE makes the model stochastic. An
other distinction is betweenAbelianandnon-Abelianmodels
@6,32#. Consider a stable initial configuration and a series
two avalanches initiated by adding energydE to sites 1 and
2. The model is Abelian if the resulting stable configurati
after the two avalanches is independent of the order in wh
the energy was added to 1 and 2 as well as of the orde
which unstable sites are toppled. Any dependence on
order makes the model non-Abelian.

The sandpile models considered in this paper are con
vative in the sense that the dynamics conserves ene
These models can be studied either with closed~or periodic!
boundary conditions, where the total energy is fixed, or w
open boundary conditions. For open boundaries, when
avalanche reaches a boundary site some energy is transf
out of the system~namely, dissipation takes place at th
boundaries!. In the case of open boundary conditions t
critical state is reached spontaneously in the limit in wh
the random addition of energy~or drive! is infinitely slow
~practically it means that the next energy unit is added o
after the previous avalanche is completed!. This state is char-
acterized by a power-law distribution of avalanche sizes
the critical state the added energydE per avalanche is bal
anced on average by the energy that flows out through
boundaries. Therefore, the average amount of energy lea
the system per avalanche isdE.

B. Previously introduced models

In the BTW model,Ec54, dE51, andDE5(1,1,1,1).
SinceDE is a constant this model is clearly determinist
Note that sinceDE is independent ofE( i), if an active site
with E( i).Ec is toppled, it remains nonempty after the to
pling event had occurred. The BTW model was shown
belong to a class of Abelian models@6#. This can be easily
demonstrated by considering two nearest neighbor site
and 2 that are active simultaneously. Although the site t
topples first adds a unit of energy to the other site, that
still distributes only four units, independently of how supe
critical it became.
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The Zhang model is a deterministic model for whichEc

51 anddE is chosen as a constant value in range 0,dE
,1 @18#. The relaxation vector is given by (b,b,b,b), where
b5E( i)/4 andE( i) is the amount of energy in the active si
before the toppling had occurred. Clearly, the sitei remains
empty after toppling. It is easy to see that the Zhang mode
non-Abelian. Consider two nearest neighbor sites 1 an
that are active simultaneously, namely,E(1)>Ec andE(2)
>Ec . If we first topple site 1 and then topple site 2~assum-
ing no further sites becomes unstable!, in the resulting con-
figurationE(1).0 andE(2)50. If the order of topplings is
reversed one obtainsE(1)50 andE(2).0, namely, the re-
sulting configuration depends on the order of topplings a
thus the model is non-Abelian. The critical exponents of
Zhang model were found to be independent of the value
the added energydE as long asdE!Ec @16#.

In a class of stochastic sandpile models, first introduc
by Manna, a set of neighbors is randomly chosen for rel
ation @17#. Such models can be specified by a set of rel
ation vectors, each vector being assigned a probability fo
application. For example, a possible realization of a Man
two-state model, withEc52 anddE51, includes six relax-
ation vectors (1,1,0,0), (1,0,1,0), (1,0,0,1), (0,1,1,0
(0,1,0,1), and (0,0,1,1), each one applied with a probab
of 1/6. In the original model introduced by Manna@17# an
unstable site distributes all its energy to its neighbors a
becomes empty. It can be shown that this model is n
Abelian using the argument presented above for the Zh
model. Later, various Abelian versions of the Manna mo
were introduced, in which the number of energy units d
tributed from an unstable site is a constant~see, e.g., Refs
@25,33,31#!. To see whether these models are Abelian, c
sider two simultaneously unstable nearest neighbor site
and 2. Assume that the relaxation vectors of these sites
predetermined~randomly! and are independent of the ord
of their toppling. In this case, just like in the BTW mode
the resulting configuration is independent of the order
topplings. Note however, that unlike the BTW model
which the final configuration is fully determined by the in
tial unstable configuration, in the Manna model the final co
figuration depends also on the random choice of the re
ation vectors. Another property of the Manna model is th
the relaxation vector is isotropic only on average, while t
single topplings are anisotropic.

C. Additional models

We will now present additional models to be used for t
study of universality within the classes of deterministic a
stochastic models. These models are variants of the Zh
model. In theGeneralized Zhangmodel the Zhang relaxation
vector is modified intoDE5(b,b,b,b) where b5pE( i)/4
and 0,p<1 is a predefined constant@34,35#. In this model
only a fractionp of the energy in the unstable sitei is dis-
tributed to its neighbors, and the rest remains ini. Like the
Zhang model, this model is deterministic and non-Abelia
Consider a pair of nearest neighbor sites 1 and 2 for wh
E(1)>Ec and E(2)>Ec simultaneously. If we first topple
site 1 and later topple site 2 we obtain
9-2
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EVIDENCE FOR UNIVERSALITY WITHIN THE . . . PHYSICAL REVIEW E 63 061309
E~1!→~12p!E~1!1
p

4
E~2!1

p2

16
E~1!,

E~2!→~12p!E~2!1
p

4
E~1!2

p2

4
E~1!,

E~11e!→E~11e!1
p

4
E~1!,

E~21e!→E~21e!1
p

4
E~2!1

p2

16
E~1!. ~2!

Reversing the order of topplings of these two sites we ob

E~1!→~12p!E~1!1
p

4
E~2!2

p2

4
E~2!,

E~2!→~12p!E~2!1
p

4
E~1!1

p2

16
E~2!,

E~11e!→E~11e!1
p

4
E~1!1

p2

16
E~2!,

E~21e!→E~21e!1
p

4
E~2!. ~3!

The difference between the two resulting configurations
found to be of orderp2. Therefore, in the limitp→0 this
difference vanishes and the order of relaxations become
relevant. The model becomes Abelian in this limit and
termed theAbelian Zhangmodel. This limit resembles the
situation in rotations of a rigid body in three-dimension
space, where infinitesimal rotations are Abelian while fin
rotations are non-Abelian@36#. Moreover, within this anal-
ogy, the BTW model may correspond to the group of ro
tions by 180° around thex, y, and z axes, which is also
Abelian.

We also consider another modification of the Zha
model, in whichDE5(b,b,b,b), whereb5pE( i)/4 and for
each toppling eventp is chosen randomly in the range
,p<1. This model, which is non-Abelian and stochastic
termedstochastic Zhangmodel.

III. SIMULATIONS AND RESULTS

To characterize the models described above we have
formed extensive computer simulations and calculated an
tended set of characterization measures for two-dimensi
sandpile models. These measures include the distribution
ponents, the geometric exponents, as well as scaling f
tions and geometric features of the avalanches@26#. Thedis-
tribution exponenttx characterizes the distribution of th
avalanche parameterx. It is found thatP(x);x12tx, wherex
may represent the avalanche sizes, areaa, or lifetime t. The
geometric exponentgxy relates the distributions ofx and y
and is defined in terms of the conditional expectation va
E@xuy#;ygxy wherex,yP$s,a,t% @13,14#. The geometric ex-
ponents satisfy the relations
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gzx5gzygyx . ~5!

The geometric exponentgsa is studied by drawing on a log
log scaleE@sua# vs a, whereE@sua# is the conditional ex-
pectation value of the avalanche size for avalanches o
given areaa. It is shown for system sizes ofL5128, 512,
and 1024 for the BTW model@Fig. 1~a!# and for the Manna
model @Fig. 1~b!#. For both models the lines coincide in th
common range of scales due to the fact that the geome
exponents are weakly dependent on the system size@25,26#.
The slope of the straight segments gives rise togsa51.06
60.01 for the BTW model andgsa51.2360.01 for the
Manna model.

FIG. 1. The conditional expectation valuesE@sua# vs a for the
BTW model ~a! and for the Manna two-state model~b! for three
different system sizes: 128(3), 512(h), and 1024(d). The expo-
nent gsa , given by the slope in the straight segment isgsa51.06
60.01 for the BTW model andgsa51.2360.01 for the Manna
model.
9-3
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The conditional expectation valuesE@sua# vs a are shown
in Fig. 2 for the BTW and Abelian Zhang models that a
deterministic as well as for the Manna and stochastic Zh
models that are stochastic. For the deterministic models
find that the exponentgsa for the Abelian Zhang model co
incides with its value for the BTW model. For the stochas
models we find that the exponentgsa for the stochastic
Zhang model coincides with its value for the Manna mod
These results indicate that there is a considerable degre
universality within each of the two classes.

The avalanche properties studied above, such as the aa
and sizes, characterize an avalanche as a whole. These p
erties are measured only after the avalanche is completed
examine the evolution during the avalanche one can st
the rate of change ofa and s during the avalanche. Th
avalanche areaac(t) is defined as the number of sites whe
at least one relaxation occurred during the firstt time steps of
the avalanche. As the avalanche is completedac(t) coincides
with the areaa of the avalanche. We definea(t) as the time
derivative of ac(t), namely, a(t)5dac(t)/dt where
dac(t)/dt[ac(t11)2ac(t). The variablea(t) gives the
number of sites that at timet became active for the first tim
~and are to be toppled in the next time step!. As the ava-
lanche evolves to an end we find that the avalanche are
given bya5( t50

tmaxa(t), wheretmax is the avalanche lifetime
and thet50 step consists of the deposition event that in
ated the avalanche. Similarlys(t) is defined as the number o
active sites at timet ~namely, sites that are to topple in th
next time step!. Then, the avalanche size is given bys
5( t50

tmaxs(t). When a(t) and s(t) are plotted for a single
avalanche, highly irregular functions are obtained in

FIG. 2. The conditional expectation valuesE@sua# vs a for the
deterministic Abelian models~BTW and Abelian Zhang! and for
the stochastic models~Manna and stochastic Zhang!. Clearly, the
E@sua# values for the Abelian Zhang model coincide with tho
obtained for the BTW model, while the stochastic Zhang res
coincide with those obtained for the Manna model. This indica
that while there is a clear distinction between the deterministic A
lian and stochastic models, within each of the two classesgsa is
universal. The system size used here isL5512 and the parameterp
used in the simulation of the Abelian Zhang model isp50.005.
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range 0<t<tmax ~note that for an avalanche of lifetim
tmax: a(t)5s(t)50 for t>tmax11). However, averaging
these functions for each value oft over a large number o
avalanches, a typical shape emerges. These averages
rise to the functionsA(t) describing the area growth rate an
S(t), which is the size growth rate of the avalanche. Acco
ing to the dynamic scaling assumption, each one of th
functions can be written in the general scaling form,

X~ t !5KX^t&X
2aXf X~m!, ~6!

wherem5t/^t&X , XP$S,A%, and

^t&X5

(
t

tX~ t !

(
t

X~ t !

. ~7!

The scaling functionf X(m) satisfies the sum rules

E
0

`

f X~m!dm5E
0

`

m f X~m!dm51. ~8!

The scaling functionsf S(m) and f A(m) for the BTW and the
Manna models were introduced in Ref.@26#, based on simu-
lation results forL5128, 256, and 512. It was shown that th
scaling functions for these two models are different fro
each other, supporting the existence of two universa
classes. Here we examine the universality of these funct
within the classes of deterministic Abelian and stochas
models. The scaling functions obtained for models in th
two classes are shown in Fig. 3. In the deterministic Abel
class we observe a good coincidence between the BTW
the Abelian Zhang models for bothf S(m) and f A(m). Simi-
larly, in the stochastic class we observe a good coincide
between the Manna and stochastic Zhang models. Thes
sults provide further evidence for universality within each
the two classes.

To characterize the avalanche structures we examine
function f ( i), that provides the number of toppling events
site i during the avalanche. The functionf ( i) is shown for
the BTW model@Fig. 4~a!#, the abelian Zhang model@Fig.
4~b!#, the Manna model@Fig. 4~c!#, and the stochastic Zhan
model @Fig. 4~d!#. For the deterministic models, we obser
a shell structure in which all sites that relaxed at leastn11
times form a connected cluster with no holes, which is co
tained in the cluster of sites that relaxed at leastn times@11#.
The Stochastic models exhibit a random avalanche struc
with many peaks and holes@25,26#. A related and useful
concept in the analysis of the avalanche structure in de
ministic Abelian models is the decomposition of an av
lanche intowavesof topplings@37–40#. The waves are ob-
tained by a specific ordering of the toppling events~after
energydE was added at sitei). The first wave consists of the
toppling of all the sites that became unstable due to the
toppling of i, beforei is toppled for the second time. Sim
larly, the nth wave is generated after thenth toppling of i,
until at the end of the last wavei remains stable. The wav

s
s
-
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EVIDENCE FOR UNIVERSALITY WITHIN THE . . . PHYSICAL REVIEW E 63 061309
structure is simpler than the entire avalanche since, for
terministic Abelian models, each site can topple at most o
during a wave, which enables complete analysis of their s
ing properties@40#. The concept of waves does not seem
apply in the case of stochastic models, in which sites
topple multiple times between topplings ofi.

As an additional test of universality we compare the d
tribution exponentts between the two models in each clas
In Fig. 5 we present on a log-log scale the distributionP(s)
vs s for the BTW (d) and the Abelian Zhang (h) models
@Fig. 5~a!#, and for the Manna (d) and the stochastic Zhan
(h) models@Fig. 5~b!#. Good agreement is found in bot
cases. For the two deterministic models the slope of
straight line segment gives rise tots52.1060.02. For the
two stochastic models,ts52.2560.02 for the Manna mode
andts52.2360.02 for the stochastic Zhang model. As not
in Ref. @25# the exponentts is not the most reliable measur
of universality due to its relatively strong size dependenc

Consider the class of deterministic models that are n
Abelian. It turns out that such models exhibit crossover
havior. For example, the exponentts of the generalized
Zhang model varies continuously as the parameterp is low-
ered from the Zhang valuets52.2660.02 at p51 to the
BTW valuests52.1060.02 asp→0 ~Fig. 6!. Also, for the
Zhang model the conditional expectation valueE@sua# vs a

FIG. 3. The scaling functions for the Abelian and stochas
models.~a! f S(t/^t&) for the stochastic models, Manna~—! and
stochastic Zhang~- -!; ~b! f A(t/^t&) for the same stochastic model
~c! f S(t/^t&) for the Abelian models, BTW~—! and Abelian Zhang
~- -!; ~d! f A(t/^t&) for the same Abelian models. In~a! and ~b! we
observe a good coincidence between the scaling function for
Manna and the stochastic Zhang models, while in~c! and ~d! we
observe a good coincidence between the BTW and the Abe
Zhang models.
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exhibits a bend typical of a crossover behavior@26#. The
average size and area growth functions during the avalan
in the Zhang model do not collapse into scaling functio
@26#. For the generalized Zhang model the avalanche st
ture is intermediate between those of the deterministic A
lian and stochastic models and depends on the parametp.
As p→0 the avalanche structure converges to the orde
shell structure of the BTW model@Fig. 4~b!#.

We conclude that the universality class of determinis
sandpile models includes only the ones that are Abel
such as the BTW and the Abelian Zhang models. The u
versality class of stochastic sandpiles includes both Abe
models~such as the Manna model! and non-Abelian models
~such as the stochastic Zhang model!.

IV. DISCUSSION

In recent years the universality in sandpile models w
studied theoretically using the fixed scale transformation
proach@19,20,41,42# as well as the dynamic renormalizatio
group ~RG! approach@21–23#. The approach introduced in
Refs.@19,20# is a real space renormalization group scheme
provides recursion equations for the dynamical variables
the system is coarse grained from smaller to larger ce
coupled to a stationary condition in order to maintain t
critical state. The equations exhibit a single stable fixed po
that is reached from either the BTW or the Manna para
eters at the microscopic scale. The approach introduce
Refs. @23# is a dynamical RG scheme based on a nonlin
partial differential equation that is designed to describe
long wavelength behavior of the sandpile dynamics. T
approach was applied to the BTW and the Zhang mod
concluding that they belong to the same universality clas

Numerical studies of sandpile models, based on an
tended set of critical exponents, scaling functions, and o
geometric features of the avalanches provided evidence
the BTW and Manna models belong to different universa
classes@25,26#. Furthermore, it was recently found that th
difference in scaling behavior of deterministic and stocha
models appears also in directed models@43#.

To further examine the results of Refs.@25,26#, the expec-
tation valuesE@sua# for the BTW and Manna models wer
studied in Ref.@24# taking into account corrections to sca
ing. It was argued that since all the avalanches satisfys.a,
and the distributionP(sua) of sizes for avalanches of a give
area is a broad asymmetric distribution, the scaling should
described according to

E@sua#5a1Cagsa, ~9!

whereC is a nonuniversal constant. Using this relation to
the simulation results they obtain a linear fit withgsa
51.3560.05 for both models, suggesting that the two mo
els belong to the same universality class. Note that in gen
the correction term could take the formag whereg,gsa , so
the choice ofa1 is somewhat arbitrary. The values of th

c

e

n
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FIG. 4. Typical large avalanche structures for the BTW model~a!, the Abelian Zhang model~b!, the Manna two-state model~c!, and the
stochastic Zhang model~d!. The gray scales indicate the number of toppling events that occurred at each site during the avalanch
represents zero relaxations and black represents the most active domains with the maximal number of relaxations. The systemL
5128. It is observed that both deterministic Abelian models exhibit a regular structure of domains of high activity inside domains o
activity, while the stochastic models exhibit an irregular structure.
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geometric exponents calculated previously, without the c
rection term, aregsa51.0660.01, gat51.5360.01, and
gst51.6260.01 for the BTW model andgsa51.2360.01,
gat51.3560.01, andgst51.7060.01 for the Manna mode
@25#. For both models, these values approximately satisfy
relationgsagat5gst , while the value ofgsa obtained in Ref.
@24# does not satisfy this relation. This is due to the fact t
for gat andgst one does not expect a correction term of th
type. More recently, the conditional probability distributio
P(sua) of the avalanche sizes for a given area was exami
using moment analysis@27,28#. It was found to exhibit mul-
tifractal scaling indicating that the scaling behavior of th
distribution cannot be fully characterized by a single exp
nent but requires a spectrum of critical exponents. The
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sults of this more complete analysis confirm the conclus
of Refs.@25,26# that the BTW and Manna models belong
different universality classes.

Further evidence for the distinction between the BTW a
the Manna models was obtained from the analysis of th
models under closed~or periodic! boundary conditions@29–
31#. In this case both the drive and the dissipation are
moved and the total energy of the system is conserved.
der these conditions the models exhibit a second or
dynamical phase transition between a static phase and a
namical phase in which the avalanche is persistent. The c
cal exponents that characterize the phase transition w
found to be different in the BTW and the Manna mode
providing further evidence that they belong to different u
9-6
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EVIDENCE FOR UNIVERSALITY WITHIN THE . . . PHYSICAL REVIEW E 63 061309
versality classes. Crossover phenomena between the
classes have also been studied@44#.

In this paper we focused on conservative, undirec
sandpile models with short range dynamic rules. There
evidence that all three properties are relevant and there
our results apply only within this type of models. For no
conservative models it was found that the critical expone
are nonuniversal. They depend on a parameter that d
mines the rate at which energy is dissipated@45,46#. Directed
sandpile models were found to exhibit a universality class
deterministic models@4# as well as a universality class o
stochastic models@47,43,48#, both exhibit different critical
behavior than the corresponding classes of undirected m
els.

It was recently shown that models of Eulerian walke
exhibit SOC @49,50#. These are deterministic models th

FIG. 5. The distribution of avalanche sizesP(s) vs s: ~a! for the
BTW (d) and the Abelian Zhang~with p50.05) models (h); ~b!
for the Manna (d) and the stochastic Zhang models (h) for L
5128. Good agreement is found between the results for the
models in each class.
06130
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share the same operator algebra as the Abelian sandpile
els, however the relaxation mechanism in these model
different. Their critical properties are found to be differe
than those of sandpile models.

V. SUMMARY AND CONCLUSIONS

Recent numerical studies of conservative, undirec
sandpile models with short range dynamic rules provid
evidence that deterministic Abelian models such as the B
model and stochastic models such as the Manna mode
hibit different scaling behavior and thus do not belong to
same universality class. In this paper we examined the
versality within each of these two classes of models, nam
the deterministic Abelian class and the stochastic class.
this end we considered additional models in the two clas
We then used an extended set of critical exponents, sca
functions, and geometric features to characterize the a
lanche dynamics of the different models in two dimensio
Comparisons of the results show nearly identical scal
properties for the models within the deterministic Abeli
class as well as within the stochastic class, providing e
dence for universality within each of these two classes. S
nificant differences are observed between the two classe
agreement with previous studies@25,26#, indicating that
these are two distinct universality classes. It was also
served that deterministic models that are non-Abelian exh
critical exponents that depend on a parameter, namely,
are nonuniversal.

o

FIG. 6. The exponentts of the avalanche size distribution fo
the generalized Zhang model as a function of the parameter 0,p
<1. It is found thatts varies smoothly as a function ofp. The
model coincides with the Zhang model forp51, wherets52.26
60.02. As p is lowered,ts decreases towards the value for th
deterministic Abelian models, namely,ts52.1060.02 in the limit
p→0. The system size isL5128.
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